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Abstract Configurational-bias Monte Carlo simulations in
the Gibbs ensemble were used to calculate Henry’s law
constants, Ostwald solubilities, and Gibbs free energies of
transfer for oxygen, nitrogen, methane, and carbon dioxide
in ethanol at 323 and 373 K. These three solubility descrip-
tors can be expressed as functions of mechanical properties
that are directly observable in the Gibbs ensemble approach,
thereby allowing for very precise determination of the de-
scriptors. Additionally, the Henry’s law constants of multiple
solutes can be computed from a single simulation. Most of
the simulations were carried out for systems containing 1,000
solvent and up to 8 solute molecules, and further simulations
using either 500 or 2,000 solvent molecules point to negli-
gible system size effects. A comparison with experimental
data shows that the united-atom version of the transferable
potential for phase equilibria force field yields Henry’s law
constants that reproduce well the differences between the four
solutes and the changes upon increase of the temperature.

1 Introduction

The Henry’s law constant, H2,1(T, p), of a solute 2 (gas) in
a solvent 1 (liquid) is an important descriptor for the solu-
bility of a volatile compound at a given temperature, T and
pressure, p, and it is defined as the limiting ratio at infinite
dilution of the equilibrium partial pressure of the solute in the
gas phase, pgas, to its concentration in the (liquid) solution,
x2 [1,2]

H2,1(T, p) = lim
x2→0

pgas
2 /x liq

2 . (1)

L. Zhang · J.I. Siepmann (B)
Departments of Chemistry and of Chemical Engineering
and Materials Science,
University of Minnesota,
207 Pleasant Street SE,
Minneapolis, MN 55455-0431,
USA
E-mail: siepmann@chem.umn.edu

Thus the value of the Henry’s law constant depends on the
type of solute, the solvent, and the temperature while the
pressure is usually taken as the saturated vapor pressure for
this binary system (but could also be an elevated pressure due
to the presence of other volatile components). Unfortunately,
different units are often used for the Henry’s law constant
depending on the chosen units for the partial pressure and
the solute concentration. In this work, the former is given in
terms of megaPascals, while dimensionless mole fraction is
used for the concentration.

Experimental difficulties in high-temperature measure-
ments of Henry’s law constants arise for many technologi-
cally important mixtures when the solvent is flammable and/or
the solute is an oxidizing agent, e.g., solubility of oxygen in
ethanol. Thus, computational methods that can accurately
predict Henry’s law constant are highly desirable.

Different approaches have been used to compute Henry’s
law constants from particle-based simulations. However, the
equilibrium partial pressure of the solute in the gas phase,
pgas

2 in Eq. (1), is not an observable property in conventional
simulations of closed systems, and as suggested by Shing et
al. [3] the Henry’s law constant is usually determined by its
relationship to the excess chemical potential

H2,1(T, p) = lim
x2→0

kBTρ1(T, p) exp

[
µex

2 (T, p, x2)

kBT

]
,

(2)

where kB, ρ1, and µex
2 are Boltzmann’s constant, the density

of the (neat) solvent, and the excess chemical potential of the
solute, respectively. The use of Eq. (2) requires prior knowl-
edge of the density of the (neat) solvent and its saturated
vapor pressure for the force field used in the simulation (be-
cause the experimental values might not be reproduced by
this force field) before the excess chemical potential can be
computed.

The most popular simulation approaches to determine
µex

2 are based on the concept of free energy perturbation [4,
5] that involves a perturbation of a reference system (usually
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the neat solvent) to a different system (usually containing one
additional solute particle). For example, Widom’s ghost par-
ticle insertion method [6,7] relates µex

2 (T, V ) via the ratio of
the canonical ensemble partition functions (for systems with
N solvent particles and with N solvent + 1 solute particles)
to the ensemble-averaged potential energy experienced by a
‘ghost’ solute particle in a system of N solvent molecules. A
similar relationship accounting for volume fluctuations also
exists for µex

2 in the isobaric–isothermal ensemble [8]. Unfor-
tunately, as has been recently demonstrated by Kofke and
Cummings [9,10], the application of free energy perturba-
tion methods can result in systematic errors depending on
the phase–space relationship between the reference and per-
turbed systems.

Another popular technique to determine free energy differ-
ences, such as µex

2 , is the expanded ensemble approach [11]
that uses a collection of sub-ensembles (either in the canon-
ical or the isobaric–isothermal ensemble) to cover the range
from the reference system to the target system. The chem-
ical potential can be computed from the probabilities with
which the reference and target systems are visited. However,
an efficient computation requires biasing the simulation tra-
jectory so that these end states and all intermediate states are
frequently sampled, which is usually achieved through iter-
ative adjustment of the biasing factors. Recently, Cichowski
et al. [12] have proposed a self-adaptive transition matrix
Monte Carlo (TMMC) method that alleviates this iterative
process and allows for the efficient computation of Henry’s
law constants.

In this work, it is demonstrated that simulations in the
Gibbs ensemble [13–15] can be used to directly compute
Henry’s law constants in a way analogous to experiments,
i.e., a two-phase system is used to directly obtain the sat-
urated vapor pressure and the solute mole fractions in the
vapor and liquid phases. The Gibbs ensemble approach has
previously been used to compute Gibbs free energies of trans-
fer for volatile and relatively involatile compounds [16–19].
Beyond great statistical precision, this Gibbs ensemble route
offers three significant advantages: (1) sophisticated config-
urational-bias Monte Carlo (CBMC) particle insertion/dele-
tion moves [20,21] that use only part of the intermolecular
potential for the calculation of Rosenbluth weights [22] can
be employed, whereas these time saving split-energy tech-
niques are not permissible for computations of residual chem-
ical potentials [20]; (2) since the Gibbs ensemble simulation
automatically finds the correct saturated vapor pressure and
the solvent density, there is no need to compute these proper-
ties of the solvent separately before carrying out a calculation
for the Henry’s law constant; and (3) following the lead of
experimental work, the Gibbs ensemble technique can also
be used to compute Henry’s law constants of multiple solutes
from a single simulation. The same Gibbs ensemble simula-
tions also provide data for the Ostwald solubility from the
ratio of the number densities of the solute in the liquid and
gas phases. Extensive comparisons are is made with experi-
mental data and recent computations by Cichowski et al. [12]
using the TMMC approach.

2 Simulation Details

A combination of the NVT version of the Gibbs ensemble
Monte Carlo (GEMC) method [13] and the coupled–decou-
pled CBMC algorithm [23] was used to calculate Henry’s
law constants for CO2, CH4, N2, and O2 in ethanol at two
different temperatures (323 and 373 K) and the correspond-
ing saturated vapor pressure. These GEMC simulations uti-
lize two separate simulation boxes for the vapor and liquid
phases. Both solvent and solute molecules are allowed to
swap between the two simulation boxes to equilibrate their
chemical potentials between the two phases, and the volume
can be exchanged from one box to the other to reach mechan-
ical equilibrium.

The frequency of the particle swap moves was adjusted
so that a swap move is accepted about once every ten Monte
Carlo (MC) cycles (one cycle consists of N MC moves with
N being the total number of molecules in the system). To en-
hance the acceptance rate for particle swap moves, the CBMC
algorithm together with multiple insertions for the first bead
[24,25] and a split-energy approach [20,21] were applied.
The latter approach employs a shorter-range potential trun-
cation (Rinner) for the Lennard–Jones (LJ) interactions and
the direct-space part of the Ewald sum for Coulombic inter-
actions during the computation of the Rosenbluth weight for
the multiple trial sites, which is then corrected only for the se-
lected trial conformation in the CBMC acceptance step [20,
21]. This split-energy approach results in a significant in-
crease of computational efficiency in particular for systems
with long-range Coulombic interactions.

The frequency of the volume moves was also adjusted to
yield about one accepted volume move per ten MC cycles.
The total volume of the two simulation boxes was set to a
value that satisfies the condition that on average approxi-
mately half of the total number of solute molecules can be
found in the vapor box and half in the liquid box.

The remainder of the MC moves is distributed evenly
over the conventional degrees of freedom for the solvent and
solute molecules, which are translations, rotations around the
center of mass, and conformational changes for ethanol.

The majority of the simulations used a system size with
1,000 solvent molecules (initially all placed in the liquid box)
and a small number of solute molecules of a given type (ini-
tially all placed in the vapor box). To investigate the concen-
tration dependence of the Henry’s law constant, simulations
were carried out with 1, 2, 4, or 8 solute molecules. With the
exception of one set of simulations containing four different
solute types, separate simulations were conducted for each
type of solute at each temperature. The simulations for the
1,000-solvent systems were equilibrated for at least 50,000
MC cycles, followed by production runs consisting of at least
300,000 cycles. The statistical uncertainties reported in this
study are standard errors of the mean obtained from carry-
ing out four independent simulations for each system (solute
type/solute concentration/temperature).

To compute the Henry’s law constant, x liq
2 in Eq. (1) can

be taken directly from the ensemble average of this property,
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Fig. 1 Partial pressure versus liquid-phase mole fraction for methane in ethanol. The simulation data for blocks of 30,000 MC cycles are depicted
by circles, and the different colors denote block data from the four independent simulations. The solid and dashed lines are the corresponding
weighted linear fit and its standard error of the mean

and pgas
2 is computed using Dalton’s law of partial pressures

from the ensemble averaged mole fraction of the solute in
the gas phase, xgas

2 , and the ensemble averaged saturation
pressure, psat.

3 Force field

The united-atom version of the transferable potentials for
phase equilibria (TraPPE–UA) [21,26,27] force field was
used to model the ethanol solvent. The TraPPE–UA force
field utilizes pseudo-atoms located at the carbon positions to
represent entire methyl or methylene groups, thereby reduc-
ing the number of interaction sites and computer time needed
to simulate the system. The nonbonded part of the TraPPE
force field consists of pairwise additive LJ and Coulombic
interactions. Fixed partial charges are used to model the first-
order electrostatic interactions of the alcohol head group by
placing charges at the polar hydrogen, oxygen, and α-carbon
atoms. This solvent model yields excellent agreement for the
saturated liquid density and vapor pressure of neat ethanol
[26].

Simulations for methane were carried out using both its
united-atom and explicit-hydrogen representations of the
TraPPE force field [21,28], and rigid three-site models [29]
were used for carbon dioxide (three LJ and three partial-
charge sites) and nitrogen (two LJ and three partial-charge
sites). For this work, a rigid three-site model for oxygen
was parameterized by fitting to the vapor–liquid coexistence
curve of neat oxygen (dOO = 1.21 Å; σO(O2) = 3.02 Å;
εO(O2)/kB = 49 K; qO(O2) = −0.113e with a compensat-
ing counter-charge of +0.226e at the bond center).

For LJ interactions, the standard Lorentz–Berthelot com-
bining rules were used for unlike pairs [30] and a site–site
based spherical potential truncation at 14 Å was employed
together with analytical tail corrections for the energy and
pressure [30,31]. Electrostatic interactions were computed
using the Ewald summation technique with tin-foil bound-
ary conditions [30].

It should be noted here that Cichowski et al. [12] also
used the TraPPE–UA force field for their TMMC simula-
tions and that, with the exception of the oxygen parameters
(see above), the force-field parameters are the same in the
TMMC and GEMC studies.

4 Results and discussion

4.1 Henry’s law constants

Figure 1 shows a plot of the partial pressure of methane (TraP-
PE–EH representation) versus its liquid-phase mole fraction
in the ethanol solvent at 323 K (and the corresponding satu-
rated vapor pressure). The four groups of data represent the
simulation results for the systems with a different number of
solute molecules (ranging from 1 to 8). For each system, the
data are shown separately for blocks of 30,000 MC cycles (ten
blocks for each run). Although there is some spread in the data
for the individual blocks, they cluster together nicely around
a mean value. Most importantly, it appears that the results for
all four concentrations can be well described by a linear fit
(i.e., the concentrations are sufficiently low that deviations
from the Henry’s law are not significant compared to the sta-
tistical uncertainties of the simulations). Similar graphs were
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Table 1 Henry’s law constants in megaPascals (mole fraction basis)

Solute T [K] GEMC TMMC Experiment

N2 323 220.5 ± 4.8 217 ± 8 253.6 ± 7.6
373 191.0 ± 5.3 193 ± 3 221.3 ± 13.3

O2 323 125.6 ± 2.9 125 ± 3 174.8 ± 8.7
373 123.6 ± 2.8 125 ± 3 159.9 ± 12.8

CH4(UA) 323 87.1 ± 2.1 86 ± 2 81.5 ± 2.4
373 91.9 ± 2.4 94 ± 2 83.4 ± 5.0

CH4(EH) 323 92.3 ± 3.1 81.5 ± 2.4
373 104.6 ± 2.9 83.4 ± 5.0

CO2 323 17.2 ± 0.4 17.8 ± 0.6 21.1 ± 1.1
373 27.1 ± 0.5 28.0 ± 0.4 29.7 ± 3.3

Comparison of the GEMC (this work) and TMMC [12] simulation data
and of the experimental benchmark data [32]. The statistical uncer-
tainties given for the simulation data are standard errors of the mean
(GEMC) and standard deviations (TMMC) computed from four inde-
pendent simulations

obtained for the TraPPE–UA representation of methane and
for the other three solutes (nitrogen, oxygen, carbon dioxide).

To determine the Henry’s law constant, the averages for
x liq

2 and pgas
2 are first computed, followed by a weighted lin-

ear fit constrained to pass through the origin. The numer-
ical data for the Henry’s law constants obtained from the
GEMC simulations are listed in Table 1 and compared to the
TMMC data by Cichowski et al. [12] and the experimental
benchmark data by Friend et al. [32]. By definition, a larger
Henry’s law constant signals a lower gas solubility. For both
temperatures, the Henry’s law constants in ethanol fall into
the order nitrogen > oxygen > methane > carbon dioxide
(and for the solubilities: carbon dioxide > methane > oxygen
> nitrogen). That is, the gas solubilities increase in the same
order as the critical temperatures of the neat gases (CO2:
304 K; CH4: 190 K; O2: 154 K; N2: 128 K). Both the GEMC
and TMMC simulation studies reproduce the experimental
data very well with mean unsigned percentage errors of 15%
for both GEMC (with UA methane) and TMMC. (Here, it
should be noted that a different oxygen model without quad-
rupole moment was used in the TMMC simulations [12].)
The GEMC simulations also show that using the explicit-
hydrogen representation for methane yields predictions for
the Henry’s law constant in (united-atom) ethanol that are not
as good as those for the united-atom version. Thus, it appears
that some caution should be applied when using the different
versions (united-atom and explicit-hydrogen representations
of alkyl segments) of the TraPPE force field together.

Overall, it appears that the simulations underpredict
Henry’s law constants (overpredict the solubility) for the
three quadrupolar solutes (N2, O2, CO2), whereas the oppo-
site is true for the nonpolar CH4 solute. Nevertheless, the
TMMC and GEMC data for O2 are in very good agree-
ment despite the former using an oxygen model without ex-
plicit partial charges [33]; a model with three explicit partial
charges is used here. A similar observation was also made by
Cichowski et al. [12] who compared nitrogen models with
and without partial charges. Thus, it appears that one might
focus on the ethanol solvent model when one wants to further

improve the accuracy of the predicted Henry’s law constants
for the solute/solvent combinations studied here. However,
the 15% mean unsigned percentage error in the Henry’s law
constant corresponds to an error of only 0.4 kJ/mol in the
Gibbs free energy of transfer, a rather small error compared
to other predictive methods.

The uncertainties in the experimental benchmark data are
about 6% and arise from the precision of the experiments,
extrapolation of the data to infinite dilution (while x liq

2 ≈ 0.02
were used for N2, CH4, and CO2), and correction of the data
to the reference pressure (while the experiments were carried
out at pressures ranging from 0.4 to 7 MPa) [32]. Remarkably,
both GEMC and TMMC simulations yield statistical uncer-
tainties that are smaller than the experimental uncertainties.
The experimental uncertainties are larger at the higher tem-
perature but they decrease with increasing temperature for the
simulations because phase space is sampled better at higher
temperatures. It appears that there is no significant differ-
ence in the statistical uncertainties obtained for the GEMC
and TMMC simulations after accounting for the different run
lengths (about 900,000 MC cycles for TMMC vs. 300,000
cycles for GEMC).

Figure 2 shows a comparison of the Henry’s law constants
calculated from the GEMC simulations with the experimental
benchmark data [32] and additional experimental data: nitro-
gen [34–37], oxygen [36], methane [34,36,38], and carbon
dioxide [34]. Due to the scarcity of direct experimental data
for the Henry’s law constants of these systems, the plot also
includes values which were derived from experimental data
for the dilute region of the vapor–liquid coexistence curves
for the binary mixtures of CH4/ethanol [38–40] and CO2/eth-
anol [39] and from experimental data for the Ostwald solu-
bility coefficients, L2,1(T, p), of nitrogen and oxygen [41].
The Ostwald solubility and Henry’s law constant are related
via [2]

L2,1(T, p) = C liq
2

Cgas
2

� RTρliq

H2,1 Mw,1
, (3)

where C liq
2 and Cgas

2 are the molar concentrations (or number
densities) for solute 2 in the liquid and gas phase, respec-
tively; ρliq and Mw,1 are the specific density of the neat sol-
vent and its molecular mass, respectively; and R is the molar
gas constant.

The changes following increase in temperature from 323
to 373 K for Henry’s law constants of the four solutes calcu-
lated from the GEMC and TMMC simulations are the same
within the statistical uncertainties and the simulation data
for the TraPPE–UA model are in excellent agreement with
experiments, i.e., all predicted temperature ratios lie within
the uncertainties of the experimental benchmark data (see
Table 2 and Fig. 2). The data for the EH representation of
methane differ somewhat more, but still fall within the com-
bined uncertainties of experiment and GEMC simulation.

As the temperature is raised from 323 to 373 K, a decrease
in the Henry’s law constant of about 15% is observed for
nitrogen, whereas that for carbon dioxide increases by about
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Fig. 2 Temperature dependence of the Henry’s law constants (mole fraction basis) for N2 (black), O2 (blue), CH4 (red), and CO2 (green) in
ethanol. The experimental benchmark data [32] and GEMC simulation data are depicted by squares and circles (filled circles for EH representation
of methane), respectively (error bars are only shown when larger than symbol size). Other experimental data for direct measurements of the
Henry’s law constant [34–37], converted from binary vapor–liquid coexistence curves [39,40] or from the Ostwald solubilities [41] are shown as
diamonds, up-triangles, and down-triangles, respectively

Table 2 Ratio of Henry’s law constants, H2,1(323 K, p)/H2,1(373 K, p)
for the GEMC simulations and for the experimental benchmark data
[32]

Solute GEMC Experiment

N2 1.15 ± 0.04 1.15 ± 0.08
O2 1.02 ± 0.03 1.09 ± 0.10
CH4(UA) 0.95 ± 0.03 0.98 ± 0.06
CH4(EH) 0.88 ± 0.04 0.98 ± 0.06
CO2 0.64 ± 0.02 0.71 ± 0.09

30%. The increase for methane is smaller with GEMC values
of 5 and 12% for the UA and EH representations, respectively.
The benchmark data for methane yield an increase of only
2%, but values derived from binary vapor–liquid coexistence
curves [39,40] show a somewhat larger increase. The bench-
mark data for oxygen [32] show a decrease of 9%, whereas
GEMC and TMMC yield essentially the same values for both
temperatures and earlier experimental data [41] even point to
an increase for temperatures below 323 K.

The origin of the different trends in solubility caused by
the change in temperature for the four solutes is not obvious.
At least for the temperature range studied here, it appears
that the solubilities for the more soluble solutes (CO2 and
CH4) decrease, whereas that for the least soluble solute (N2)
increases. Furthermore, additional experimental data point to
a solubility minimum for nitrogen [35–37] and oxygen [32,
41] and to a maximum for methane [40,36,39]. A decrease
in solubility is often viewed as driven by the entropic penalty
of solvation, but the heat capacity of transfer may play an
equally important role [42].

4.2 System size effects

Particle-based simulations are always carried out for system
sizes far from the thermodynamic limit, and it is, therefore,
important to assess the system-size dependence of the calcu-
lated properties. This is particularly important here because
the calculation of excess chemical potentials is known to
depend on system size [17,43]. To test whether the standard
system size containing 1,000 solvent molecules used here
is appropriate, additional GEMC simulations were carried
out at 323 and 373 K for CO2/ethanol systems containing
500 solvent and 1 solute molecules and 2,000 solvent and
4 solute molecules, i.e., changing the system size but keep-
ing the overall composition constant. For comparison, the
TMMC simulations were carried out for systems containing
216 ethanol molecules and 1 solute molecule. The produc-
tion periods for the 500 and 2,000 solvent molecule systems
consisted of 300,000 and 200,000 MC cycles, respectively.

Henry’s law constants, Ostwald solubilities, and free ener-
gies of transfer calculated for the three different system sizes
are in excellent agreement (see Table 3), i.e., systems con-
taining a few hundred solvent molecules appear to be suffi-
cient for a reliable calculation of Henry’s law constants in
the Gibbs ensemble. A similar conclusion was previously
reached for the determination of Gibbs free energies of trans-
fer from GEMC simulations [17]. It should be noted here that
the Henry’s law constants listed in Tables 1 and 3 are not ex-
actly the same because the latter were computed using only
one overall composition, while four different compositions
were used for the former.
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Table 3 System size dependence of the Henry’s law constant (mole
fraction basis), Ostwald solubility, and Gibbs free energy of transfer for
carbon dioxide in ethanol obtained from GEMC simulations using only
one solute concentration

T System size H2,1 L2,1 �G trans
[K] [MPa] [kJ/mol]

323 500:1 18.0 ± 0.5 2.44 ± 0.03 −2.40 ± 0.03
1000:2 17.7 ± 0.6 2.48 ± 0.03 −2.44 ± 0.03
2000:4 18.0 ± 0.8 2.45 ± 0.08 −2.41 ± 0.09

373 500:1 27.2 ± 0.7 1.64 ± 0.03 −1.53 ± 0.06
1000:2 26.5 ± 0.7 1.68 ± 0.03 −1.61 ± 0.06
2000:4 27.2 ± 0.8 1.64 ± 0.06 −1.53 ± 0.11

4.3 Concurrent determination of Henry’s law constants for
multiple solutes

Given the observation that a relatively small system size
yields accurate results for the Henry’s law constant of a sin-
gle solute type, it also needs to be checked whether the sol-
ubilities of multiple solutes can be determined from a single
GEMC simulation. Similarly, experimental measurements
are often carried out concurrently for multiple solutes. For
example, the benchmark experiments [32] used dilute mix-
tures of oxygen and nitrogen (for obvious safety reasons).
Furthermore, it should be mentioned that Widom’s ghost par-
ticle insertion method [6,7] can also be applied to multiple
solutes with only a negligible overhead because the same set
of solvent configurations can be used in each case. An exten-
sion of the expanded ensemble approach to multiple solutes
would be somewhat more involved because additional sub-
ensembles would be required.

For the standard GEMC protocol described in Sect. 2,
simulations were carried out separately for four different sol-
utes and four different compositions (and using four inde-
pendent runs), i.e., a total of 16 solute type/concentration
combinations using 1,000 solvent molecules. If it would be
possible to reduce this to a single simulation containing con-
currently all four solutes and still obtain reasonable results,
then the benefit of GEMC simulation over traditional free-
energy perturbation methods would be even more profound.

The concurrent simulation systems used here contained
only 500 solvent molecules and 1 molecule for each solute
type (504 molecules in total) and were run for 600,000 MC
cycles (twice as long as the standard simulations) at both tem-
peratures. Again, four independent simulations were used to
estimate the standard error of the mean.

It should be noted that the overall simulation volume for
the standard simulations was adjusted during the equilibra-
tion period to allow for about equal numbers of solute mol-
ecules in the gas and liquid phases. This is, of course, not
possible for multiple solutes (where the volume can only be
adjusted to yield roughly equal numbers for the sum of the
four solutes in the two phases) which will increase the sta-
tistical uncertainties for the solutes with the largest and the
smallest Henry’s law constants.

Table 4 shows a comparison of the Henry’s law constants
obtained from the concurrent and standard GEMC simula-

Table 4 Comparison of Henry’s law constants in megaPascals (mole
fraction basis) obtained from standard and concurrent simulations

T [K] Solute Standard Concurrent

323 N2 220.5 ± 4.8 222.9 ± 3.7
O2 125.6 ± 2.9 128.4 ± 1.7
CH4 87.1 ± 2.1 86.0 ± 1.5
CO2 17.2 ± 0.4 17.9 ± 0.5

373 N2 191.0 ± 5.3 190.2 ± 2.6
O2 123.6 ± 2.8 124.1 ± 1.6
CH4 91.9 ± 2.4 89.9 ± 1.4
CO2 27.1 ± 0.5 27.7 ± 0.5

tions. As can be seen, the data for the concurrent and stan-
dard simulations agree within their combined uncertainties
for all four solutes and two temperatures. However, given that
the concurrent simulations required a factor of about 25 less
computer time (4 independent runs of 600,000 MC cycles
for 500 solvent molecules versus 64 runs of 300,000 cycles
for 1,000 solvent molecules), the results for the concurrent
simulations are very encouraging and this approach appears
to be best when Henry’s law data for multiple solutes needs
to be computed.

5 Conclusions

This study shows that configurational-bias MC simulations
in the Gibbs ensemble allow the precise determination of
Henry’s law constants, Ostwald solubilities (or partition
coefficients), and Gibbs free energies of transfer. The Gibbs
ensemble data shows excellent agreement with recent predic-
tions obtained using a transition matrix MC approach [12].
The predicted data for the TraPPE–UA force field yield a
mean unsigned error of 15% from experimental benchmark
data [32] and the temperature dependence of the Henry’s
law constants is very well reproduced. The largest deviations
are observed for the solubility of oxygen, whereas the devia-
tions for nitrogen, methane, and carbon dioxide are somewhat
smaller. It should be noted here that binary vapor–liquid equi-
libria with alkanes were exploited in the force field develop-
ment to obtain an improved balance of the LJ and Coulombic
interactions in the nitrogen and carbon dioxide models [29].

Computations of the Henry’s law constants for differ-
ent system sizes demonstrate that 500 solvent molecules are
sufficient to yield reliable predictions. More importantly, it is
also shown that the Henry’s law constants of multiple solutes
can be calculated concurrently from a single simulation in
the Gibbs ensemble.

Although they are not required for the solute/solvent com-
binations studied here, it should be mentioned that use of
special balancing factors [44] allows for an extension of the
Gibbs ensemble approach to the calculations of Gibbs free
energies of transfer for cases where the gas solubilities are
either very low or very high (leading to large uncertainties in
x liq

2 or pgas
2 , respectively). These balancing factors are pre-

set external potentials acting on a specific solute type in a
specific phase, which are very similar in spirit to the biasing
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parameter used in expanded-ensemble simulations [11] and,
which can be removed in the calculation of the Gibbs free
energy of transfer [44]. However, even with these balanc-
ing factors, the Gibbs ensemble acceptance rate for complete
particle swaps might become prohibitively low and either
an expanded Gibbs ensemble approach [45] or a family of
homologous solutes [16,44] need to be used.
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